

West Labs 1td.

Industrial Electronics Department

Руководство по вводу в эксплуатацию систем типа WL4x

Содержание

Доступ к настройке и задание параметров ЧПУ	5
Диагностика	6
Область системного драйвера	12
Сигналы входного драйвера №0 (SYS_in)	13
Сигнал "Выполняется программа"	13
Сигнал "КП ожидает квитанцию"	13
Сигнал "КП обрабатывает команду автоматики"	13
Сигнал "выполняется перемещение"	13
Сигнал "Программа активна"	14
Сигнал "внутренний буфер кадров УП пуст "	14
Сигнал "внутренний буфер кадров УП полон "	14
Указание номера нового инструмента	14
Указание номера новой М команды	15
Сигнал "Преднабор активен"	15
Сигнал "частота вращения шпинделя не равна заданной"	15
Сигнал "шпиндель в позиции"	16
Сигнал "шпиндель вращается"	16
Сигнал "выполняется программный сброс КП"	16
Текущий режим КП	16
Указание выхода в ноль по координатам	17
Сигнал "Сброс электроавтоматики"	17
Статус электроавтоматики	17
Сигнал "Выполняется команда электроавтоматики"	17
Сигнал "Команда выполнилась успешно"	18
Сигнал "Будет смена М"	18

Сигнал "Будет смена S"	18
Сигнал "Будет смена Т"	18
Сигнал "Будет смена А"	18
Сигнал "Цикл электроавтоматики в работе"	18
Указание номера новой S команды (ступени)	18
Сигнал незапрещения работы приводов от КП	19
Задание М-команд ЧПУ	19
Ошибки контроллера перемещения	20
Ошибка времени обработки одного цикла КП	20
Ошибка рассогласования	20
Ошибка интерполятора КП	20
Ошибка енкодеров КП	20
Ошибка "Программа не на траектории"	20
Ошибка "М команда не выполнена"	20
Указание на смену координат	21
Сигналы выходного драйвера №0 (SYS_out)	22
Текущий инструмент	22
Процентное регулирование рабочей подачи	22
Состояние "нулевых" путевых датчиков	23
Состояние путевых датчиков "ограничение минус"	23
Состояние путевых датчиков "ограничение плюс"	24
Процентное регулирование подачи ускоренных перемещений	24
Процентное регулирование подачи ускоренных перемещений Разрешенные оси	
	25
Разрешенные оси	25

Группа команд №1	27
Группа ключей №1	28
Задание режима работы КП	28
Текущая ступень шпинделя	29
Процентное регулирование частоты вращения шпинделя	29
Подтверждения выполнения М-команд ЧПУ	30
Сигналы индикации ошибок объекта управления	32
Сигналы индикации предупреждений объекта управления	32
Сигналы индикации сообщений объекта управления	32
Включенные оси по слежению	33
Сигналы индикации пользовательских сообщений объекта управления	33
Драйвер пульта для контроллера электроавтоматики	34
Драйвер параметров для контроллера электроавтоматики	35
Структура файла параметров системы «acdat.ini»	35
Драйвер энергонезависимой памяти для контроллера электроавтоматики	37
Статус "Данные достоверны"	38
Статус "Выключение питания"	38
Сигнал "Копирование данных"	39
Драйвер устройства CAN для контроллера электроавтоматики	40

4

Доступ к настройке и задание параметров ЧПУ

Настройка параметров ЧПУ производится путем задания значений
соответствующих параметров с терминала. Для доступа к параметрам
существует скрытый пункт меню "ПАРАМ". Для того, чтобы открыть доступ к
этому пункту меню необходимо в режиме вывода ошибок (переход на экран
ошибок по "F5") трижды подряд нажать кнопку 🛨 (минус), после чего в
списке пунктов меню появится пункт "ПАРАМ" (F8). Для повторного скрытия
данного пункта меню необходимо в режиме главного меню трижды подряд
нажать кнопку (минус).
При выборе пункта меню "ПАРАМ" открывается список доступных к
изменению параметров. Для задания значения конкретного параметра
необходимо с помощью кнопок перемещения курсора выбрать маркером
гребуемый параметр из списка и нажать кнопку 😉(«ВВОД»). Для
параметров задание производится вводом значения с цифровой клавиатуры
терминала. Параметры организованы в виде дерева. Сходные по
функциональному назначению параметры собраны в группы. Открытие
выбранной группы осуществляется нажатием кнопки 🔁. Для закрытия
группы необходимо нажать кнопку 🛨.

5

Диагностика

Доступ к режиму диагностики производиться в зависимости от версии ПО следующим образом:

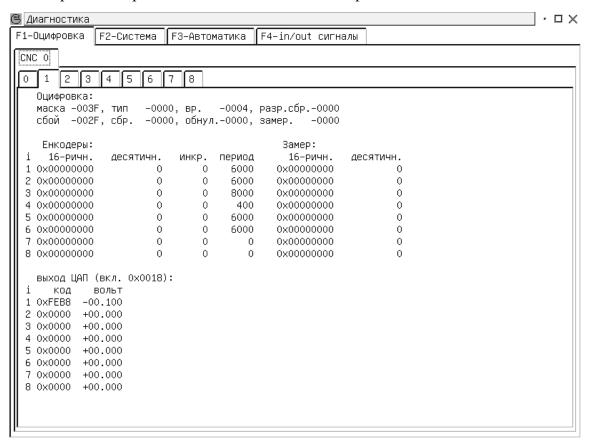
Версия ПО 2.4.хх: Аналогично доступу к системным параметрам. Для доступа к этому пункту меню необходимо в режиме вывода ошибок (переход на экран ошибок по "F5") трижды подряд нажать кнопку "-" (минус), после чего в списке пунктов меню появится пункт "ДИАГ" (F7). Для повторного скрытия данного пункта меню необходимо в режиме главного меню трижды подряд нажать кнопку "-" (минус).

Версия ПО 3.х: Необходимо загрузить модуль диагностики следующим образом:

Экран ошибок (F5 «Ошибки»);

Вызвать список дополнений (F9 «Дополнения»);

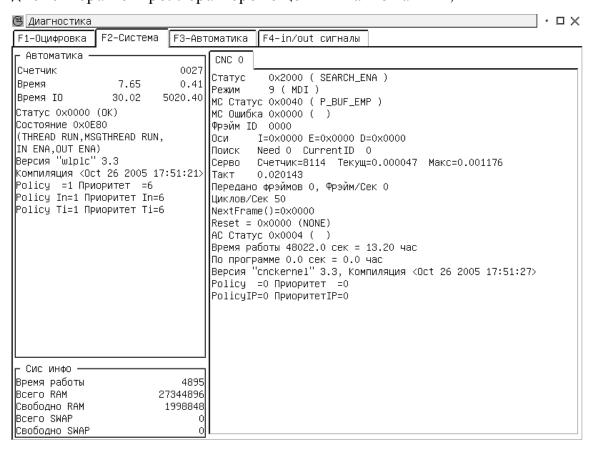
Выбрать в списке «Модуль диагностики»;

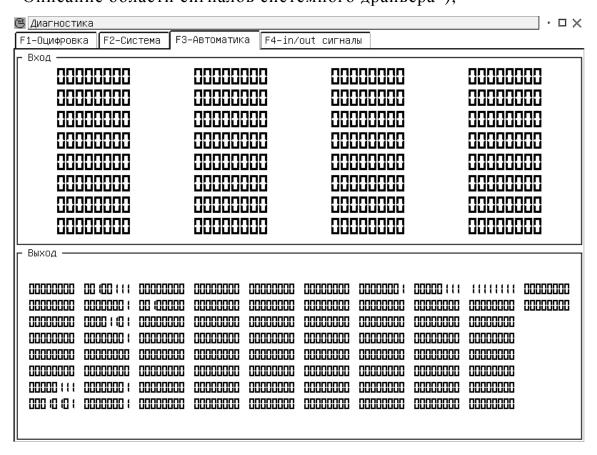

В если в колонке «Загрузка» стоит «Не загружен», нажать "-" (минус).

Сохранить сделанные изменений («F9 - Сохранить»)

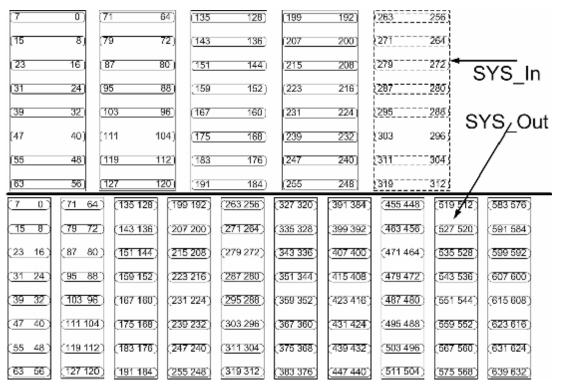
В режиме «Ошибки» в списке пунктов меню появится пункт "ДИАГ" (F7).

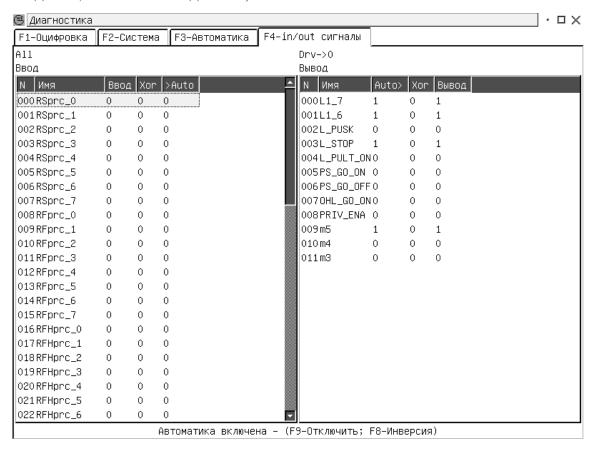
В режиме диагностики имеется несколько экранов, которые переключаются нажатием функциональных клавиш.


F1- экран отображения показаний энкодеров и цап;


Кнопками 0-8 можно просматривать состояние контроллера перемещений.

7


F2 - экран отображения состояний переменных интерпретатора, диспетчера контроллера перемещений и автоматики;


F3 - экран с системной областью памяти электроавтоматики (см. "Описание области сигналов системного драйвера");

Соответствие отображения областей и номеров битов.

F4 - экран на котором выводятся сигналы поступающие на вход и выдающиеся на выход ЧПУ;

«Сброс» - выход из режима диагностики;

В режиме по F4 имеется возможность выдавать на выход ЧПУ сигналы вручную. Для этого необходимо вначале отключить электроавтоматику. Это производиться по нажатию кнопки "F9". Будет выдано предупреждение что автоматика будет отключена. После выбора "Да", автоматика перестанет выдавать сигналы на выход ЧПУ. Изменения значений сигналов производиться кнопками "0" или "1". Соответственно сигналы устанавливаются в эти значения. Кнопка "-" позволяет инвертировать выбранный сигнал. Кнопка "ВВОД" позволяет ввести в диалоговом окне значение сигнала.

Включение электроавтоматики производиться нажатием кнопки "F10".

ВНИМАНИЕ! На выход ЧПУ будут поданы те сигналы которые выдает контроллер электроавтоматики.

Также имеется возможность инвертировать входные и выходные сигналы автоматики без отключения ее работы.

Включение режима инверсии «F8»-Инверсия.

Отключение - «F10».

Кнопка "-" позволяет инвертировать выбранный сигнал.

Выход из режима диагностики кнопка «СБРОС» или кнопка «F10».

West Labs Ltd

11

Область системного драйвера

В данном разделе рассматриваются соглашения относительно взаимодействия контроллера электроавтоматики WL PLC-072-1-1.01 с контроллером перемещений (КП) для СЧПУ семейства WL.

Для обеспечения взаимодействия КП с КА необходимо: Объявить в проекте редактора КА использование **типа** драйвера №0.

RMN	Тип
SYS	0

Объявить в проекте редактора KA использование **входного и выходного драйверов** типа 0.

RMN	Тип	Тип	Адрес	Битов	Прерывание
	драйвера				
SYS_in	SYS	Вход	00000000	280	0
SYS_out	SYS	Выход	00000000	592	0

Области сигналов драйверов SYS_in и SYS_out имеют определенную структуру для обеспечения однозначной передачи управляющих и ответных сигналов электроавтоматики на контроллер перемещения и обратно. Список сигналов и порядок их расположения приведен ниже. Программист-наладчик обязан обеспечить передачу (или формирование) соответствующих по функциональному назначению сигналов и корректную логику обработки запросов КП на выполнение команд электроавтоматики при программировании логики работы КА в составе СЧПУ семейства WL.

12

Сигналы входного драйвера №0 (sys_in)

Сигналы, определенные в SYS_in предназначены для передачи информации от КП в КА.

Сигнал "Выполняется программа"

RMN	Драйвер	Бит	Комментарий
SiMC_REG_ACTIVE	SYS_in	0	

Высоким уровнем сигнала siMC_REG_ACTIVE КП информирует о том, что он находится в активном режиме по команде оператора "ПУСК".

Сигнал "КП ожидает квитанцию"

RMN	Драйвер	Бит	Комментарий
SiPRG_WAIT_KWIT	SYS_in	1	

Высоким уровнем сигнала siprg_WAIT_KWIT КП информирует о том, что он ожидает ответ от КП о результате выполнения последней М-команды.

Сигнал "КП обрабатывает команду автоматики"

RMN	Драйвер	Бит	Комментарий
SiPRG_AUTOMATIC_RUN	SYS_in	2	

Высоким уровнем сигнала siprg_Automatic_run КП информирует о том, что он обрабатывает команду автоматики.

Сигнал "выполняется перемещение"

RMN	Драйвер	Бит	Комментарий
SiMOVING_ON	SYS_in	3	

Высоким уровнем сигнала simoving_on KП информирует о том, что выполняется перемещение.

13

Сигнал "Программа активна"

RMN	Драйвер	Бит	Комментарий
SiPRG_ACTIVE	SYS_in	4	

Высоким уровнем сигнала SiPRG_ACTIVE КП информирует о том, что выполняется отработка управляющей программы.

Сигнал "внутренний буфер кадров УП пуст"

ями	Драйвер	Бит	Комментарий
SiOUTPUT_BUFFER_EMPTY	SYS_in	6	

Высоким уровнем сигнала siOUTPUT_BUFFER_EMPTY КП информирует о том, что его внутренний буфер кадров УП пуст.

Сигнал "внутренний буфер кадров УП полон"

RMN	Драйвер	Бит	Комментарий
SiOUTPUT_BUFFER_FULL	SYS_in	7	

Высоким уровнем сигнала $siOUTPUT_BUFFER_FULL$ КП информирует о том, что его внутренний буфер кадров УП полон.

Указание номера нового инструмента

RMN	Драйвер	Бит	Комментарий
SiNEW_T0	SYS_in	8	
SiNEW_T1	SYS_in	9	
SiNEW_T2	SYS_in	10	
SiNEW_T3	SYS_in	11	
siNEW_T4	SYS_in	12	
siNEW_T5	SYS_in	13	
siNEW_T6	SYS_in	14	
siNEW_T7	SYS_in	15	

Этими сигналами КП информирует КА о номере инструмента, который должен быть установлен системой электроавтоматики по команде смены

14

инструмента из управляющей программы М6 (по приходу импульсного сигнала M6_in). Сигналы устанавливаются при обнаружении в управляющей программе СЧПУ команды Тп и удерживаются постоянным уровнем до появления новой команды Тп. Может указываться номер п от 0 до 255 в двоичном формате, младший разряд в siNEW_T0, старший разряд в siNEW_T7. Если смена инструмента не поддерживется, допускается не определять данную группу переменных в таблице сигналов проекта.

Указание номера новой М команды

RMN	Драйвер	Бит	Комментарий
SiNEW_M0	SYS_in	16	
SiNEW_M1	SYS_in	17	
SiNEW_M2	SYS_in	18	
SiNEW_M3	SYS_in	19	
SiNEW_M4	SYS_in	20	
SiNEW_M5	SYS_in	21	
SiNEW_M6	SYS_in	22	
SiNEW_M7	SYS_in	23	

Номер команды в двоичной форме удерживается до прихода следующей М-команды.

Сигнал "Преднабор активен"

RMN	Драйвер	Бит	Комментарий
SiMDI_ACTIVE	SYS_in	24	

Сигнал "частота вращения шпинделя не равна заданной"

RMN	Драйвер	Бит	Комментарий
SiSPIND_FRQ_DIF	SYS_in	28	

Высоким уровнем сигнала siSPIND_FRQ_DIF КП информирует о том, что частота вращения шпинделя не лежит в пределах "Sзаданная±N%", где N –

15

величина системного параметра "Допустимое отклонение частоты вращения шпинделя в процентах от заданной".

Сигнал "шпиндель в позиции"

RMN	Драйвер	Бит	Комментарий
SiSPIND_IN_POS	SYS_in	29	

Сигнал "шпиндель вращается"

RMN	Драйвер	Бит	Комментарий
SiSPIND_TURN	SYS_in	30	

Сигнал "выполняется программный сброс КП"

RMN	Драйвер	Бит	Комментарий
Sireset_ACTIVE	SYS_in	31	

Высоким уровнем сигнала sireset_Active КП информирует о том, что выполняется процедура его программного сброса.

Текущий режим КП

RMN	Драйвер	Бит	Комментарий
SiCUR_MODE0	SYS_in	32	
SiCUR_MODE1	SYS_in	33	
siCUR_MODE2	SYS_in	34	
siCUR_MODE3	SYS_in	35	
siCUR_MODE4	SYS_in	36	
siCUR_MODE5	SYS_in	37	
siCUR_MODE6	SYS_in	38	
siCUR_MODE7	SYS_in	39	

Этими сигналами КП информирует КА о своем текущем режиме работы. Режим работы указывается в двоичном коде. Ниже приведены номера возможных режимов:

16

имя	Номер
soGO_ZERO_MODE	1
soHAND_MODE	2
soJOG_MODE	3
soGO_TO_1	4
soGO_TO_2	5
soGO_TO_3	6
soGO_TO_PRG	7
soPRG_MODE	8
soMDI_MODE	9

Если не включен ни один сигнал, КП находится в режиме "СИСТЕМНАЯ ОТЛАДКА".

Указание выхода в ноль по координатам

RMN	Драйвер	Бит	Комментарий
SiHome_Set0	SYS_in	40	
SiHome_Set1	SYS_in	41	
SiHome_Set2	SYS_in	42	
SiHome_Set3	SYS_in	43	
SiHome_Set4	SYS_in	44	
SiHome_Set5	SYS_in	45	
SiHome_Set6	SYS_in	46	
SiHome_Set7	SYS_in	47	

Информирует о том, был ли выход в ноль по координате.

Сигнал "Сброс электроавтоматики"

RMN	Драйвер	Бит	Комментарий
SiReset	SYS_in	48	

Импульсный сигнал проходит при нажатии кнопки «Сброс» на пульту оператора.

Статус электроавтоматики

Сигнал "Выполняется команда электроавтоматики"

RMN	Драйвер	Бит	Комментарий
SiCmd_Run	SYS_in	56	

Данный сигнал высоким уровнем информирует о том, что выполняется одна из команд M, S или T. T.e. сигнал SiCmd_Run устанавливается в 1 при приходе в электроавтоматику команды на выполнение M,S или T.

Сигнал "Команда выполнилась успешно"

RMN	Драйвер	Бит	Комментарий
SiCmd_Result	SYS_in	57	

Данный сигнал показывает результат выполнения команды M, S или T.

Сигнал "Будет смена М"

RMN	Драйвер	Бит	Комментарий
SiBSM	SYS_in	58	

Сигнал "Будет смена S"

RMN	Драйвер	Бит	Комментарий
SiBSS	SYS_in	59	

Сигнал "Будет смена Т"

RMN	Драйвер	Бит	Комментарий
SiBST	SYS_in	60	

Сигнал "Будет смена А"

имя	Драйвер	Бит	Комментарий
SiBSA	SYS_in	61	

Сигнал "Цикл электроавтоматики в работе"

RMN	Драйвер	Бит	Комментарий
SiThread_Run	SYS_in	63	

Высокий уровень сигнала показывает, что цикл обработки электроавтоматики находится в работе. В противном случае, вероятнее всего, что произошла какая-либо ошибка, которая прервала цикл обработки.

18

Указание номера новой S команды (ступени)

RMN	Драйвер	Бит	Комментарий
-----	---------	-----	-------------

SiNEW_S0	SYS_in	88	
SiNEW_S1	SYS_in	89	
SiNEW_S2	SYS_in	90	
SiNEW_S3	SYS_in	91	
SiNEW_S4	SYS_in	92	
SiNEW_S5	SYS_in	93	
SiNEW_S6	SYS_in	94	
SiNEW_S7	SYS_in	95	

Сигнал незапрещения работы приводов от КП

RMN	Драйвер	Бит	Комментарий
SiGEARS_ENABLED	SYS_in	96	

Сигналом siGEARS_ENABLED КП разрешает или запрещает работу приводов координат на станке.

Значение 0 – запрещено, 1- разрешено.

Задание М-команд ЧПУ

имя	Драйвер	Бит	Комментарий
M3_in	SYS_in	128	
M4_in	SYS_in	129	
M97_in	SYS_in	222	
M98_in	SYS_in	223	

Импульсные сигналы с номерами от 128 до 223 предназначены для передачи от КП в КА М-команд управляющей программы. Неиспользуемые сигналы допускается не указывать в таблице сигналов проекта.

Каждому сигналу Mn_in соответсвует М-команда, где n-номер М-команды от 3 до 98. Когда КП требуется выполнить команду электроавтоматики, генерируется соответсвующий прямой импульсный сигнал минимально возможной длительности (кратковременный переход с уровня "0" в уровень "1" и обратно).

Кроме этих сигналов по приходу каждой следующей М-команды, ее номер заносится по адресам 16-23 в двоичной форме и удерживается до прихода следующей М-команды:

Порядок обработки М-команд подробно изложен в п. "Состояние М-команд ЧПУ".

Ошибки контроллера перемещения

Ошибка времени обработки одного цикла КП

RMN	Драйвер	Бит	Комментарий
SiTOO_LOW_TAU	SYS_in	240	

Ошибка рассогласования

RMN	Драйвер	Бит	Комментарий
SiDISPLACEMENT_FAIL	SYS_in	241	

Ошибка интерполятора КП

Р ММ	Драйвер	Бит	Комментарий
SiINTERPOLATOR_FAIL	SYS_in	242	

Ошибка енкодеров КП

ямм	Драйвер	Бит	Комментарий
SiENCODER_FAIL	SYS_in	243	

Ошибка "Программа не на траектории"

ямМ	Драйвер	Бит	Комментарий
SiPRG_NOT_POSITION	SYS_in	248	

Ошибка "М команда не выполнена"

RMN	Драйвер	Бит	Комментарий
SiMCODE_NOT_EXEC	SYS_in	249	

Ошибки SiTOO_LOW_TAU, SiDISPLACEMENT_FAIL, SiENCODER_FAIL, SiINTERPOLATOR_FAIL являются критическими ошибками, по появлению данных сигналов необходимо снимать разрешение на включение приводов.

Указание на смену координат

RMN	Драйвер	Бит	Комментарий
SiAxesNew0	SYS_in	256	
SiAxesNew1	SYS_in	257	
SiAxesNew2	SYS_in	258	
SiAxesNew3	SYS_in	259	
SiAxesNew4	SYS_in	260	
SiAxesNew5	SYS_in	261	
SiAxesNew6	SYS_in	262	
SiAxesNew7	SYS_in	263	

Маска координат которые нужно включить для перемещения.

Сигналы выходного драйвера №0 (SYS_out)

Сигналы, определенные в SYS_out предназначены для передачи информации от KA в KП.

Текущий инструмент

имя	Драйвер	Бит	Комментарий
soCUR_T0	SYS_out	0	
soCUR_T1	SYS_out	1	
soCUR_T2	SYS_out	2	
soCUR_T3	SYS_out	3	
soCUR_T4	SYS_out	4	
soCUR_T5	SYS_out	5	
soCUR_T6	SYS_out	6	
SoCUR_T7	SYS_out	7	
SoT_IND_TYPE	SYS_out	91	

Сигналами 0-7 (socur_to - 7) КА информирует КП о номере текущего установленного инструмента. В зависимости от уровня сигнала 91 (sot_ind_type) КП будет интерпретировать сигналы 0-7 как двоичный (sot_ind_type=0) или позиционный (sot_ind_type=1) код номера текущего инструмента.

Таким образом, при sot_IND_TYPE=0 может указываться номер от 0 до 255 в двоичном коде, или при sot_IND_TYPE=1 может указываться номер от 0 до 8 в позиционном коде.

Процентное регулирование рабочей подачи

RMN	Драйвер	Бит	Комментарий
soFprc_0	SYS_out	8	
soFprc_1	SYS_out	9	
soFprc_2	SYS_out	10	
soFprc_3	SYS_out	11	
soFprc_4	SYS_out	12	
soFprc_5	SYS_out	13	
soFprc_6	SYS_out	14	

Сигналы 8-15 передают в КП значение регулятора процентного регулирования рабочей подачи в двоичном коде. Значения кода могут находиться в пределах от 0 до 255, что соответствует установкам регулятора от 0% до МАХ%. Значение МАХ и соответствующие коэффициенты пересчета двоичного кода устанавливаются в соответствующих параметрах СЧПУ при вводе в эксплуатацию и недоступны для оперативного изменения.

Состояние "нулевых" путевых датчиков

РМИ	Драйвер	Бит	Комментарий
soCON_1	SYS_out	16	
soCON_2	SYS_out	17	
soCON_3	SYS_out	18	
soCON_4	SYS_out	19	
soCON_5	SYS_out	20	
SoCON_6	SYS_out	21	
SoCON_7	SYS_out	22	
SoCON_8	SYS_out	23	

Сигналами 16-23 (socon_1 – 8) КА информирует КП о состоянии путевых контактных датчиков (выключателей), используемых в процедуре выхода в 0. Значение 0 – выключен, 1- включен (нажат).

Состояние путевых датчиков "ограничение минус"

ЯМЯ	Драйвер	Бит	Комментарий
soCON_1m	SYS_out	24	
soCON_2m	SYS_out	25	
soCON_3m	SYS_out	26	
soCON_4m	SYS_out	27	
soCON_5m	SYS_out	28	
soCON_6m	SYS_out	29	
soCON_7m	SYS_out	30	
soCON_8m	SYS_out	31	

Сигналами 24-31 (soCON_1m – 8m) КА информирует КП о состоянии путевых контактных датчиков (выключателей), используемых для ограничения хода в направлении "минус". Значение 0 – выключен, 1- включен (нажат).

Состояние путевых датчиков "ограничение плюс"

РМИ	Драйвер	Бит	Комментарий
soCON_1p	SYS_out	32	
soCON_2p	SYS_out	33	
soCON_3p	SYS_out	34	
soCON_4p	SYS_out	35	
soCON_5p	SYS_out	36	
soCON_6p	SYS_out	37	
soCON_7p	SYS_out	38	
soCON_8p	SYS_out	39	

Сигналами 32-39 (soCON_1p – 8p) КА информирует КП о состоянии путевых контактных датчиков (выключателей), используемых для ограничения хода в направлении "плюс". Значение 0 – выключен, 1- включен (нажат).

Процентное регулирование подачи ускоренных перемещений

RMN	Драйвер	Бит	Комментарий
SoFHprc_0	SYS_out	40	
SoFHprc_1	SYS_out	41	
SoFHprc_2	SYS_out	42	
SoFHprc_3	SYS_out	43	
SoFHprc_4	SYS_out	44	
SoFHprc_5	SYS_out	45	
SoFHprc_6	SYS_out	46	
SoFHprc_7	SYS_out	47	

Сигналы 40-47 передают в КП значение регулятора процентного регулирования подачи ускоренных перемещений в двоичном коде. Значения кода могут находиться в пределах от 0 до 255, что соответствует установкам регулятора от 0% до МАХ%. Значение МАХ и соответствующие коэффициенты пересчета двоичного кода устанавливаются в соответствующих параметрах СЧПУ при вводе в эксплуатацию и недоступны для оперативного изменения.

Разрешенные оси

RMN	Драйвер	Бит	Комментарий
soENA_1	SYS_out	48	
soENA_2	SYS_out	49	
soENA_3	SYS_out	50	
soENA_4	SYS_out	51	
soENA_5	SYS_out	52	
soENA_6	SYS_out	53	
soENA_7	SYS_out	54	
soENA_8	SYS_out	55	

Сигналами 48-55 (soena_1 – 8) КА информирует КП о разрешенных к участию в групповых операциях осях. Значение 0 – разрешена, 1- запрещена. Групповыми операциями являются команды перемещения по осям в режимах "ВЫХОД В 0", "ПОЗИЦИОНИРОВАНИЕ В Т1/2/3" и "ПОЗИЦИОНИРОВАНИЕ В ТОЧКУ ПРОГРАММЫ".

Команды перемещения

имя	Драйвер	Бит	Комментарий
soPLUS_1	SYS_out	56	
SoMINUS_1	SYS_out	57	
soPLUS_2	SYS_out	58	
SoMINUS_2	SYS_out	59	
soPLUS_3	SYS_out	60	
SoMINUS_3	SYS_out	61	
soPLUS_4	SYS_out	62	
SoMINUS_4	SYS_out	63	
soPLUS_5	SYS_out	520	
SoMINUS_5	SYS_out	521	
soPLUS_6	SYS_out	522	
SoMINUS_6	SYS_out	523	
soPLUS_7	SYS_out	524	
SoMINUS_7	SYS_out	525	
soPLUS_8	SYS_out	526	
SoMINUS_8	SYS_out	527	

Этими сигналами КА информирует КП о командах перемещения по соответвующим осям в соответствующем направлении. Эта информация используется КП в режимах "РУЧНЫЕ ПЕРЕМЕЩЕНИЯ" и "ДИСКРЕТНЫЕ

ПЕРЕМЕЩЕНИЯ". При наличии взаимоисключающих команд, например soPLUS_1 и soMIN_1, ЧПУ игнорирует обе команды.

Значение 0 – не перемещаться, 1- перемещаться.

Текущий номер подачи

имя	Драйвер	Бит	Комментарий
sofeed_1	SYS_out	64	
sofeed_2	SYS_out	65	
sofeed_3	SYS_out	66	
sofeed_4	SYS_out	67	
sofeed_5	SYS_out	68	
sofeed_6	SYS_out	69	
sofeed_7	SYS_out	70	
sofeed_8	SYS_out	71	

Этими сигналами КА информирует КП о текущей выбранной подаче. Если одновременно в состоянии 1 находятся несколько сигналов, то КП воспринимает самый старший бит из набора включенных. Если все биты находятся в состоянии 0, КП воспримет указание sofeed_1 (минимальная подача- младший бит). Данная информация используется КП в режимах "РУЧНЫЕ ПЕРЕМЕЩЕНИЯ" и "ДИСКРЕТНЫЕ ПЕРЕМЕЩЕНИЯ".

Текущий номер дискреты

RMN	Драйвер	Бит	Комментарий
SoDISCR_1	SYS_out	72	
SoDISCR_2	SYS_out	73	
SoDISCR_3	SYS_out	74	
SoDISCR_4	SYS_out	75	
SoDISCR_5	SYS_out	76	
SoDISCR_6	SYS_out	77	
SoDISCR_7	SYS_out	78	
SoDISCR_8	SYS_out	79	

Этими сигналами КА информирует КП о текущей дискрете от №1 до №8. Если одновременно в состоянии 1 находятся несколько сигналов, то КП воспринимает самый старший бит из набора включенных. Если все биты

находятся в состоянии 0, КП воспримет указание soDISCR_1 (младшая дискрета – младший бит). Описанная информация используется КП в режиме "ДИСКРЕТНЫЕ ПЕРЕМЕЩЕНИЯ".

Группа коман∂ №1

ЯМИ	Драйвер	Бит	Комментарий
SoPUSK_PRG	SYS_out	80	команда ПУСК
SoSTOP_PRG	SYS_out	81	команда СТОП
SoSTOPP	SYS_out	82	команда СТОП ПОДАЧИ
SoMACH_READY	SYS_out	83	команда СТАНОК ГОТОВ
SoSPIND_JOG	SYS_out	84	команда ТОЛЧЕК ШПИНДЕЛЯ
SoSPIND_PLZ	SYS_out	85	команда "ПОЛЗУЧКА"
			ШПИНДЕЛЯ
SoSPIND_POS	SYS_out	86	команда "ШПИНДЕЛЬ в
			позицию"

Команды ПУСК и СТОП воспринимаются КП только в режимах "ВЫХОД В 0", "ПОЗИЦИОНИРОВАНИЕ В Т1/2/3",

"ПОЗИЦИОНИРОВАНИЕ В ТОЧКУ ПРОГРАММЫ" и "ПРОГРАММА". Команда СТОП ПОДАЧИ воспринимается КП во всех режимах КРОМЕ РЕЗЬБОВОГО ДВИЖЕНИЯ.

Команда СТАНОК ГОТОВ разрешает перемещения КП.

Команда ТОЛЧЕК ШПИНДЕЛЯ включает вращение шпинделя с частотой, заданной системным параметром "СКОРОСТЬ ТОЛЧКА ШПИНДЕЛЯ" с учетом текущей ступени.

Команда "ПОЛЗУЧКА" ШПИНДЕЛЯ формирует безусловную выдачу управляющего напряжения заданной системным параметром "КОД ЦАП "ПОЛЗУЧКИ" ШПИНДЕЛЯ" в ЦАП шпинделя. Применяется при смене ступени шпинделя.

Команда "ШПИНДЕЛЬ в ПОЗИЦИЮ" устанавливает шпиндель в позицию заданную в параметрах.

Значение 0 – команда не задана, 1- команда задана.

Группа ключей №1

ЯМЯ	Драйвер	Бит	Комментарий
SoSW_M1	SYS_out	88	Условный останов по программе
SoSW_USKOR	SYS_out	89	Ускоренное выполнение
			программы
SoSW_POKAD	SYS_out	90	По кадровое выполнение
			программы

Данные ключи воспринимаются КП только в режиме "ПРОГРАММА". Значение 0 – выключен, 1- включен.

RMN	Драйвер	Бит	Комментарий
SoT_IND_TYPE	SYS_out	91	

Номер инструмента при $sot_{IND_TYPE=0}$ может указываться от 0 до 255 в двоичном коде, или при $sot_{IND_TYPE=1}$ может указываться от 0 до 8 в позиционном коде.

RMN	Драйвер	Бит	Комментарий
SoD_IND_TYPE	SYS_out	92	

Номер диапазона или ступени шпинделя при soD_IND_TYPE=0 может указываться от 0 до 255 в двоичном коде, или при soT_IND_TYPE=1 может указываться от 0 до 7 в позиционном коде.

RMN	Драйвер	Бит	Комментарий
SoSW_HH	SYS_out	93	Ускоренное перемещение

Задание режима работы КП

Имя	Драйвер	Бит	Комментарий
soGO_ZERO_MODE	SYS_out	104	ВЫХОД В 0
SoHAND_MODE	SYS_out	105	РУЧНЫЕ ПЕРЕМЕЩЕНИЯ
SoJOG_MODE	SYS_out	106	ДИСКРЕТНЫЕ ПЕРЕМЕЩЕНИЯ
SoGO_TO_1	SYS_out	107	ПОЗИЦИОНИРОВАНИЕ В Т. №1
SoGO_TO_2	SYS_out	108	ПОЗИЦИОНИРОВАНИЕ В Т. №2
SoGO_TO_3	SYS_out	109	ПОЗИЦИОНИРОВАНИЕ В Т. №3
SoGO_TO_PRG	SYS_out	110	ПОЗИЦИОНИРОВАНИЕ В Т.
			ПРГ.
SoPRG_MODE	SYS_out	111	ПРОГРАММА
SoMDI_MODE	SYS_out	112	ПРЕДНАБОР

Сигналы предназначены для передачи в КП текущего установленного режима управления. Если включено несколько режимов, КП воспринимает самый старший режим из включенных. Если не включен ни один режим, КП воспринимает режим "СИСТЕМНАЯ ОТЛАДКА".

Текущая ступень шпинделя

RMN	Драйвер	Бит	Комментарий
SoCUR_D0	SYS_out	120	
SoCUR_D1	SYS_out	121	
SoCUR_D2	SYS_out	122	
SoCUR_D3	SYS_out	123	
SoCUR_D4	SYS_out	124	
SoCUR_D5	SYS_out	125	
SoCUR_D6	SYS_out	126	
SoCUR_D7	SYS_out	127	
soD_IND_TYPE	SYS_out	92	

Сигналами 120-127 (soCUR_D0 – 7) КА информирует КП о номере текущей установленной ступени шпинделя. В зависимости от уровня сигнала 92 (soD_IND_TYPE) КП интерпретирует сигналы 120-127 как двоичный (soD_IND_TYPE=0) или позиционный (soD_IND_TYPE=1) код номера текущей установленной ступени шпинделя.

Таким образом, при soD_IND_TYPE=0 может указываться номер от 0 до 255 в двоичном коде, или при soT_IND_TYPE=1 может указываться номер от 0 до 7 в позиционном коде.

Процентное регулирование частоты вращения шпинделя

имя	Драйвер	Бит	Комментарий
SoSprc_0	SYS_out	96	
SoSprc_1	SYS_out	97	
SoSprc_2	SYS_out	98	
SoSprc_3	SYS_out	99	
SoSprc_4	SYS_out	100	
SoSprc_5	SYS_out	101	

SoSprc_6	SYS_out	102	
SoSprc_7	SYS_out	103	

Сигналы 96-103 передают в КП значение регулятора процентного регулирования частоты вращения шпинделя в двоичном коде. Значения кода могут находиться в пределах от 0 до 255, что соответствует установкам регулятора от 0% до MAX%.

Подтверждения выполнения М-команд ЧПУ

имя	Драйвер	Бит	Комментарий
M3_wr	SYS_out	128	
M3_kw	SYS_out	129	
M4_wr	SYS_out	130	
M4_kw	SYS_out	131	
M97_wr	SYS_out	312	
M97_kw	SYS_out	313	
M98_wr	SYS_out	314	
M98_kw	SYS_out	315	

Сигналы с номерами от 128 до 315 предназначены для передачи в КП ответов об исполнении КА М-команд управляющей программы в режиме "ПРОГРАММА". Неиспользуемые переменные допускается не объявлять.

Сигналы объявляются парами, по два сигнала на одну М-команду - Mn_wr и Mn_kw, где n-номер M-команды от 3 до 98.

Сигналы Mn_wr служат для передачи в КП признака того, что команда находится в процессе исполнения. До тех пор, пока сигнал Mn_wr содержит значение "1", КП находится в состоянии ожидания результата выполнениия М-команды. Как только уровень сигнала Mn_wr становится равным "0", КП анализирует уровень соответствующего сигнала Mn_kw как результат выполнения М-команды:

Mn_kw=0 - невыполнена

 $Mn_kw=1$ – выполнена.

Таким образом, обработка контроллером электроавтоматики М-команд от КП должена выполняться в следующем порядке:

- Если сигнал Mn_in в SYS_in принял значение "1" и выполнение команды требует определенного времени, установить сигнал Mn_wr в состояное "1". Следует учитывать, что сигнал Mn_in импульсный.
- По окончании выполнения команды установить результат сигналом Mn_kw. (Mn_kw=0 невыполнена, Mn_kw=1 выполнена).
- Установить сигнал Mn_wr в состояное "0".

Следует обратить особое внимание на сигналы M3_kw и M4_kw. Кроме функции квитанции о выполнении соответствующих команд M3 и M4 эти сигналы используются КП для формирования управляющего напряжения для главного привода (вращения шпинделя). При отсутствии обоих сигналов управляющее напряжение будет равно нулю (кроме случая установленного сигнала ТОЛЧЕК ШПИНДЕЛЯ или сигнала "ПОЛЗУЧКА" ШПИНДЕЛЯ, при котором напряжение формируется независимо от состояния сигналов M3_kw и M4_kw).

При наличии сигнала M3_kw будет формироваться напряжение с величиной, соответствующей заданной на текущий момент частоте вращения шпинделя и полярностью, соответствующей направлению вращения "по часовой стрелке" (М3). При наличии сигнала M4_kw будет формироваться напряжение с величиной, соответствующей заданной на текущий момент частоте вращения шпинделя и полярностью, соответствующей направлению вращения "против часовой стрелке" (М4).

Следует учитывать эти особенности сигналов M3_kw и M4_kw при создании схемы обработки запросов на выполнение команд, связанных с управлением шпинделем – включение/выключение, смена ступени, смена инструмента и т.

Д.

Сигналы индикации ошибок объекта управления

Имя	Драйвер	Бит	Комментарий
OBJ_ERR_00	SYS_out	320	ошивка 0
OBJ_ERR_01	SYS_out	321	ОШИБКА 1
OBJ_ERR_62	SYS_out	382	
OBJ_ERR_63	SYS_out	383	

Сигналы с 320 по 383 предназначены для передачи на терминал оператора сообщений об аварийных ситуациях при функционировании объекта управления ("Красный сигнал"). В качестве текста сообщения будет использоваться текст в поле "КОММЕНТАРИЙ" таблицы сигналов проекта.

Сигналы индикации предупреждений объекта управления

RMN	Драйвер	Бит	Комментарий
OBJ_WRN_00	SYS_out	384	предупреждение О
OBJ_WRN_01	SYS_out	385	предупреждение 1
		•	
OBJ_WRN_62	SYS_out	446	
OBJ_WRN_63	SYS_out	447	

Сигналы с 384 по 383 предназначены для передачи на терминал оператора сообщений об ошибках в функционировании объекта управления, способных привести к аварийным последствиям ("Желтый сигнал"). В качестве текста сообщения будет использоваться текст в поле "КОММЕНТАРИЙ" таблицы сигналов проекта.

Сигналы индикации сообщений объекта управления

RMN	Драйвер	Бит	Комментарий
OBJ_MSG_00	SYS_out	448	СООБЩЕНИЕ 0
OBJ_MSG_01	SYS_out	449	СООБЩЕНИЕ 1
		•	
OBJ_MSG_62	SYS_out	510	
OBJ_MSG_63	SYS_out	511	

Сигналы с 448 по 511 предназначены для передачи на терминал оператора технологических информационных сообщений о функционировании объекта управления ("Зеленый сигнал"). В качестве текста сообщения будет использоваться текст в поле "КОММЕНТАРИЙ" таблицы сигналов проекта.

Включенные оси по слежению

Имя	Драйвер	Бит	Комментарий
SoTURN_ON_1	SYS_out	512	
soTURN_ON_2	SYS_out	513	
soTURN_ON_3	SYS_out	514	
soTURN_ON_4	SYS_out	515	
soTURN_ON_5	SYS_out	516	
soTURN_ON_6	SYS_out	517	
soTURN_ON_7	SYS_out	518	
soTURN_ON_8	SYS_out	519	

Сигналами 512-520 (soturn_on_1 - 8) КА информирует КП о включенных осях по слежению. Значение 0 – выключена, 1- включена.

Сигналы индикации пользовательских сообщений объекта управления

RMN	Драйвер	Бит	Комментарий
OBJ_PBL_00	SYS_out	528	СООБЩЕНИЕ 0
OBJ_PBL_01	SYS_out	529	СООБЩЕНИЕ 1
		•	
OBJ_PBL_62	SYS_out	590	
OBJ_PBL_63	SYS_out	591	

Сигналы с 528 по 591 предназначены для передачи на терминал оператора любых информационных сообщений . В качестве текста сообщения будет использоваться текст в поле "КОММЕНТАРИЙ" таблицы сигналов проекта.

Драйвер пульта для контроллера электроавтоматики

В данном разделе рассматриваются соглашения относительно взаимодействия контроллера пульта с контроллером электроавтоматики СЧПУ семейства WL.

Для обеспечения взаимодействия контроллера пульта с KA необходимо: Объявить в проекте редактора KA использование **типа драйвера** №4.

RMN	Тип
PULT	4

Объявить в проекте редактора КА использование **входного и выходного драйверов** типа 4.

RMN	Тип	Тип	Адрес	Битов	Прерывание
	драйвера				
PULT_in	PULT	Вход	00000002	320	0
PULT_out	PULT	Выход	00000002	240	0

Области сигналов драйверов PULT_in и PULT_out не имеют определенной структуры данных. Для каждой системы (различных типов станков) расположение одинаковых сигналов может быть различным. Приблизительный список сигналов и порядок их расположения приведен ниже. Программист-наладчик обязан обеспечить передачу (или формирование) соответствующих по функциональному назначению сигналов и корректную логику обработки запросов КП на выполнение команд электроавтоматики при программировании логики работы КА в составе СЧПУ семейства WL.

Область сигналов PULT_in можно поделить на четыре основных области данных.

Диапазон сигналов	Тип	
0-63	Кнопки	
64-127	Кнопки (2 группа)	
128-191	Переключатели	
192-255	Плавные	
	регуляторы	

Драйвер параметров для контроллера электроавтоматики

В данном разделе рассматриваются для ввода и настройки параметров передаваемых от СЧПУ семейства WL в автоматику.

Для обеспечения взаимодействия СЧПУ с КА необходимо:

Объявить в проекте редактора КА использование типа драйвера №6.

RMN	Тип
PARAM	6

Объявить в проекте редактора КА использование входного драйвера типа 6.

RMN	Тип	Тип	Адрес	Битов	Прерывани
	драйвер				е
	a				
PARAM_i	PARAM	Вход	0000000	256	0
n			0		

Добавить в файл описания параметров системы acdat.ini описание каждого параметра.

Структура файла параметров системы «acdat.ini»

Структура файла подобно дереву. В корне находится группа «Main». Далее идут группы «Discret», «Feed» и «Auto». В каждой группе описываются соответствующие параметры.

Пример описания одного параметра для автоматики.

[Name] -основная секция файла

FileName=/home/param/acdat.dat -имя файла где сохраняются

введенные данные

Caption=Automatic parameters -заголовок в окне

редактирования

[Main]

Name=Automatic parameters -имя группы

Group= Discret, Feed, Auto -список подгрупп

[Main.Auto] -Описание подгруппы «Auto»

Name=User parameters

Group=Auto0, Auto1 -Два параметра

[Main.Feed] -Описание подгруппы «Feed»

Name=Feeds

Group=Feed0, Feed1, Feed2, Feed3, Feed4, Feed5, Feed6, Feed7

-Параметры

[Main.Discret] -Описание подгруппы «Discret»

Name=Discrets

Group=Discret0, Discret1, Discret2, Discret3, Discret4, Discr

et5, Discret6, Discret7 -Параметры

[Main.Discret.Discret0] -Описание первого параметра

«Discret0»

Name=Discret 1 -Имя, индицируется в диалоге

Туре=1 -Тип параметра

Min=0 - Минимальное значение

Мах=65535 - Максимальное значение

Default=1 -Значение по умолчанию

Edit=1 - Разрешение на редактирование

Dim=mikron -Размерность

Драйвер энергонезависимой памяти для контроллера электроавтоматики

В данном разделе рассматриваются соглашения относительно взаимодействия энергонезависимой памяти с контроллером электроавтоматики СЧПУ семейства WL.

Для обеспечения взаимодействия энергонезависимой памяти с KA необходимо:

Объявить в проекте редактора КА использование типа драйвера №8.

RMN	Тип
RAM	8

Объявить в проекте редактора КА использование **входного и выходного драйверов** типа 8

RMN	Тип	Тип	Адрес	Битов	Прерывание
	драйвера				
RAM_in	RAM	Вход	00000000	240	0
RAM_out	RAM	Выход	00000000	240	0

Программист-наладчик обязан обеспечить передачу (или формирование) соответствующих по функциональному назначению сигналов и корректную логику обработки запросов КП на выполнение команд электроавтоматики при программировании логики работы КА в составе СЧПУ семейства WL.

Логика работы данного драйвера следующая:

- При включении системы восстанавливаются состояния сигналов обоих драйверов (входного и выходного).
- При записи значений в выходной драйвер, состояние входного не изменяется.

37

- При выключении, в энергонезависимую память записываются данные из выходного драйвера.
- Для копирования данных из выходного драйвера во входной существует признак NVRAM_DATA_COPY. При установке его в 1 копирование производится при каждом цикле отработки автоматики.

Длина области сигналов драйвера не должна превышать 1024*8=8192 бита.

Первый байт в области сигналов драйвера индицирует его текущее состояние.

ВНИМАНИЕ! Первый байт области выходного драйвера закрыт от записи кроме бита NVRAM_DATA_COPY.

Для доступа к данным автоматики из управляющей программы имеется возможность использовать переменные с номерами #4000 - #4999. Значение каждой переменной является байт области выходного драйвера. #4000 — первый байт, #4001 — второй байт и т.д.

Статус "Данные достоверны"

РММ	Драйвер	Бит	Комментарий
Data_Ok	RAM_in	0	

Данный бит сигнализирует о достоверности данных в области энергонезависимой памяти. Если равен 1 то контрольная сумма совпала с записанной, если бит равен 0 то контрольная сумма не совпала с записанной.

Статус "Выключение питания"

RMN	Драйвер	Бит	Комментарий
Power_Ok	RAM_in	1	

Данный бит сигнализирует о способе выключения питания. Если равен 1 то предыдущее выключение системы было произведено правильно. Если бит равен 0 то скорее всего выключение системы было вызвано пропаданием питающего напряжения, т.е. без сохранения необходимых данных.

Сигнал "Копирование данных"

RMN	Драйвер	Бит	Комментарий
NVRAM_DATA_COPY	RAM_out	2	

Данный бит инициирует копирование данных из выходного драйвера во входной.

Драйвер устройства CAN для контроллера электроавтоматики

В данном разделе рассматриваются соглашения относительно взаимодействия CAN устройства с контроллером электроавтоматики СЧПУ семейства WL.

Для обеспечения взаимодействия CAN устройства с KA необходимо: Объявить в проекте редактора KA использование **типа** драйвера №7.

RMN	Тип
CAN	7

Объявить в проекте редактора КА использование **входного и выходного драйверов** типа 7.

RMN	Тип	Тип	Адрес	Битов	Прерывание
	драйвера				
CAN_in	CAN	Вход	00000001	64	1
CAN_out	CAN	Выход	00000002	64	2

Области сигналов драйверов CAN_in и CAN_out не имеют определенной структуры данных. Для каждой системы (различных типов станков) расположение одинаковых сигналов может быть различным. Программист-наладчик обязан обеспечить передачу (или формирование) соответствующих по функциональному назначению сигналов и корректную логику обработки запросов КП на выполнение команд электроавтоматики при программировании логики работы КА в составе СЧПУ семейства WL. В поле «Адрес» указывается дескриптор устройства. Определяется перемычками на плате устройства САN.

В поле «Прерывание» указывается логический номер устройства. Значения начинаются с 1. Устройств с одинаковыми логическими номерами не должно быть.

40

Длина области одного устройства 64 бита.